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Abstract. The Two-Layer Model has an enduring appeal for designers of pipework for particle-bearing liquids. In an earlier paper the author showed that the model could be reduced to a quadratic equation in V2 , the velocity of the lower layer. By reducing this velocity to zero, an equation for the critical deposition velocity can be obtained. This is the threshold velocity below which the deposit, or bed, is stationary. Details of the model and a worked example using the holdup ratio in the pipe are described.
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NOTATION

	A, A1, A2
	area of pipe cross-section, upper layer, lower layer 
	m2

	a,b,c
	coefficients of a quadratic equation aV2+bV+c=0
	-

	C
	concentration as volume/volume
	-

	(C
	incremental concentration in the lower layer
	-

	Cc
	contact load, concentration v/v of contact layer
	-

	Clim
	volumetric concentration of a loose-packed bed.
	-

	Cr
	in situ concentration (over whole pipe section)
	-

	Cv
	delivered concentration (over whole pipe section)
	-

	d
	particle diameter
	m

	D
	pipe bore diameter
	m

	-dP/dz (see also i)
	pressure gradient downstream (+z direction)
	Pa/m or m/m water

	F(()
	non-dimensional cross-section area of lower layer
	

	f, f12
	pipe friction factor, friction factor between layers
	

	g
	acceleration due to gravity
	m/s2

	i
	headloss downstream (+z direction)
	m water/m 

	S1, S2, S12
	arc perimeter of layer1, layer2 & length of interface
	m

	sp
	relative density of particles
	-

	V, V1 , V2
	pipe velocity, velocities in upper and lower layers
	m/s

	Vt
	Threshold velocity for initiation of turbulent support
	m/s

	(
	half-angle subtended by interface between layers
	degrees or radians

	Λ
	holdup ratio, i.e. [image: image2.png]



	

	(, (1, (2, (S, (L
	density, ..of .. layer 1, .. layer 2, .. solids, .. liquid
	kg/m3

	(1, (2, (12
	shear stress from layer 1, layer 2 and interface 1/2
	N/m2

	(
	pipe inclination
	deg/rad

	(s
	coefficient of friction of layer 2 with pipe wall
	


1. INTRODUCTION

Two distinct mechanisms of particle support – fluid suspension and intergranular contact – were investigated by Bagnold (1956). Using this principle, the Two-Layer Model, invented by Professor K.C.Wilson, can be applied to the design of pipework for particle-bearing liquids. The particle distribution is simplified into an upper layer in which the particles are supported by hydrodynamic forces only, and a lower layer in which particles are totally or sporadically supported by a loosely packed bed and ultimately the pipe wall. They are additionally subject to Coulombic friction as they progress. A notional horizontal interface separates the two layers. The downstream pressure gradients in the upper and lower layers are matched to solve the system of equations. 

[image: image81.png]co=acx2



C.A.Shook (Shook, 1991) developed a computer program to solve the Two-Layer Model by matching the downstream pressure gradient in the upper and lower layers. He reported slow convergence of his iterative methods to (a) match the downstream pressure gradients, and (b) locate the interface in terms of its subtended angle 2β. These were difficult iterations, especially when the interface was at a low position (impossible for [image: image4.png]


) and only part of the solution space could be explored by such methods. T.F.Jones (2011) recast the pressure gradient problem so that an equation incorporating the velocity of the lower layer V2 could be obtained in the form
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The troublesome interface-locating subroutine was replaced with a direct lookup procedure. The technique proved itself robust and a spreadsheet solution for any interface position was developed to provide solutions almost immediately from the model. Spreadsheet solutions allowed examination of the behaviour of a model (two-layer) mixture at and below the critical velocity for satisfactory suspension.

1.1. STATIONARY BED LOCUS AND CONTACT LOAD

The direct calculation method allows the plotting of headloss characteristics (pressure gradient vs mean pipe velocity) down to the point at which the lower-layer velocity, V2, becomes zero. If this is done for a series of mixtures (varied, say, by concentration or particle size) a locus of extinction points can be obtained. The first challenge is to quantify the contact load for a given flow of slurry in a given pipe. Wilson, 1976, suggested a correlation based on the threshold velocity for the initiation of turbulent support, Vt, the throughput velocity V and the delivered concentration, Cv. Shook and Roco, 1991 developed a “tentative” correlation based on relevant dimensionless groups. In the light of the availability of the direct calculation method, empirical correlations for the contact load are set aside for this paper and an array of values of Cr and Cv/ Cr are used. If the velocity of the lower layer is zero, the delivered concentration Cv is identical to the concentration in the upper layer C1. A useful outcome of this exploration will be a method of estimating critical deposition velocities as a function of pressure gradient and pipe velocity and not only as a single optimum value.

2. A SUMMARY OF THE THEORY

This is a recapitulation and extension of theory given in Jones 2011
. It is based on the flow of a settling slurry for which the liquid and solid properties, the diameter of the pipe bore and the screening size of the particles are known. The overall pipe velocity and the in situ concentration (v/v) will also be assumed at the outset although these quantities will be examined in the context of the discussion of suspension and settling velocities.

The momentum equations for each layer give
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In a steady-state situation [image: image8.emf]dP
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i.e. 
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(5)
2.1 INTERFACE SUBTENDED ANGLE 
For given concentration and flow-rate, the proportion of particle volume in the lower layer yields an estimate of the cross-sectional area, A2. Inconveniently, the perimeter of each layer,[image: image10.emf]S, &S,
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 subtended at the centre of the pipe cross-section by the interface between the layers. A method must therefore be found to calculate the subtended angle from the cross-sectional area of the lower layer.

From the geometry of Figure 1, the non-dimensionalised area of the lower layer A2, F(), is given by 
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(6)
An iterative solution of [6] for  in terms of F fails at small values of ( as demonstrated by a Taylor expansion of F(() as [image: image15.emf]








 . The function has an infinite gradient at (=0.

Expanding sin2( as a power series and ignoring terms O(β5) and higher

[image: image16.emf]
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for small values of or its supplement

(7)
i.e. [image: image17.emf]
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(8)
Equation (7) can be used for small values of  (say 0≤<5° or 175°<≤180°) beyond which a simple table look-up with 3rd-order Taylor Series interpolation provides a very accurate estimate of  directly. The long iteration times and/or instabilities which beset earlier programs are avoided. 

2.2. SHEAR STRESSES 1,2, 12
The shear stresses in the fluid in upper layer, (1 and interface (12 can be calculated using relevant friction factors and fluid velocities as follows
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(9)
Given the Reynolds number and the sand roughness of the wall, ε , the friction factor f can be obtained from the well-known Moody Chart (L.F.Moody, 1944). Shook used a fit to the data (Churchill, 1977) to calculate f .

The factor f12 presents a stumbling block. Clearly the relative motion (V1-V2) is the important factor in the friction calculation. Particle size, d, could be used for roughness, but Reynolds number would be difficult to quantify. Shook’s computer program uses a correlation based on the ratio of particle size to pipe diameter.
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where
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and
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[image: image82.png]co=acx2




The second part of (9), (2mS2 , is simply the fluid friction component dependent on friction factor and fluid velocity. The area term (per unit axial distance) S2 is the arc defined by 2( and 
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(12)
The first part of (9), 2sS2cos , is the Coulombic friction between the particle load in the lower layer and the pipe wall for pipe inclination θ. This is given by
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(13)
See Jones, 2011 for a derivation of (12) (after Shook and Roco, 1991, and Wilson, 1970,1976)

2.3. ASSEMBLING THE MODEL

Substituting for shear stresses 1 and 12, gives an equation in which the only unknowns are V1 and V2. Application of the conservation of volume equation
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allows the elimination of V1 or V2 to form a quadratic equation which can be solved in the usual way. The equation to solve for V2 is given at equation (15)
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where
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(18) 

The relative values of Cc (the contact load) and Cr (the in situ concentration) define the area of the lower segment, A2. Given an array of these quantities and a value for the loose-packed concentration of the lower layer, Clim, (Shook uses 0.6), the angular positions of the interface, , can be tabulated. Hence S1, S2 and S12 and values for a,b,c can be obtained.

3. STATIONARY LOWER LAYER - DEPOSITION VELOCITY

The focus of this paper is the zone within which the velocity of the lower layer reaches extinction. As [image: image36.png]Vo =0



then [image: image38.png]


, so when the lower layer is stationary equation (19) is obtained for the velocity at the Stationary Bed Locus (NB A-A2 has been substituted for A1).
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For a horizontal pipe
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Equation (19) can be evaluated for an array of C1/Cr by Cr values. Now, for a static bed, C1 is the delivery concentration Cv so
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[21]

where Λ= the holdup ratio.

The calculation sequence is as follows (See Jones, 2011 for details of the model).

[image: image46.png]








(22)
[image: image48.png]







(23)
[image: image50.png]o, =p,[1+Cy x(Gpr—1)]









(24)
[image: image52.png]










(25)
[image: image54.png]








(26)
[image: image56.png]D*
2653 = 05 X AC XX

= Cuim
L2C4m) ¢ o, — g GinlBE] - BE)eosTEEID













(27)
[image: image58.png]










(28)
[image: image60.png]









(29)
[image: image62.png]x sin[B(F)]










(30)
The pressure gradient is given by
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It is usual to present this as a positive headloss, i , in m of water per m. So, for [image: image66.png]Ve = 0
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(32)
The headloss diagram is obtained by plotting VSBL against headloss iSBL . This plotted at Figure 2 for Shook’s example (Shook and Roco,1991). The value of deposition velocity is at the maximum of this diagram. Figure 2 illustrates results from the model for a series of C1/Cr functions. 
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Fig. 2.: Headloss graph for sand/water slurry
(Pipe diameter, D= 0.25m, particle size, d=0.5mm, pipe roughness, =0.000045m)
4. CONCLUSIONS

1. The Two-Layer Model can be reduced to an equation of the form [image: image70.emf]aVi +bV,+c=0
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. For a stationary bed [image: image72.png]Vo =0



, so [image: image74.png]


.
2. Setting c=0 gives an equation for the Stationary Bed Locus, i.e. an equation for the mean pipe velocity, VSBL, when the lower layer is stationary.

3. A set of variables must be obtained to populate the equation for the SBL and the derivation of these variables has been demonstrated.

4. As an example, the equation for VSBL was populated by an array of values of [image: image76.png]


. SBL curves were constructed for a sequence of [image: image78.png]


values. [image: image80.png]


where Λ= the holdup ratio, so the example could be used in cases where holdup had been measured.
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Figure 1: Two-Layer Model (Shook and Roco 1991)
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� Please note an unfortunate transcription error in the previous paper (Jones 2011) which escaped author and reviewers. Equation (A3) should read   � QUOTE � ���  , so  � QUOTE � ���
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